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Abstract

In the �rst part of this work, a thorough parametric study investigating the selection of

suitable values and scaling for the parameters associated with the CIP stabilization scheme

is presented. The recently developed FenicsR13 �nite element code, which solves the

linearized R13 equations to predict non-equilibrium gas �ows, employs a CIP stabilization

scheme and has, therefore, been used in this study. A Python code capable of generating

analytical solutions of the linearized R13 equations for problems de�ned over an annular

domain was developed. The solutions generated by this script have been used to setup

various cases for the parametric study. Qualitative analysis of the convergence curves

produced by FenicsR13 for di�erent cases has been used to deduce optimal values and

scaling for the CIP stabilization parameters. Finally, observations from the results of the

parametric study are presented and discussed to provide a basic intuition for selecting

appropriate parameters for di�erent problems.

The focus of the second part of this thesis is on extending the FenicsR13 solver's

capability of predicting the physics of �ows accurately, by including non-linearity in the

conservations equations. A new scaling for the R13 equations is presented in order to im-

prove the convergence of the non-linear iterations carried out by the solver. The non-linear

extension for the momentum conservation equation is validated against the benchmark

solutions of the lid-driven cavity problem for the cases of Re = 100, Re = 1000, Re = 3200

and Re = 5000. Following this, a non-isothermal lid-driven cavity is constructed for the

validation of the non-linear extension with respect to the mass and energy conservation

equations. Finally, results for this problem generated by the established commercial solv-

ers ANSYS FLUENT and COMSOL are presented.

Keywords: R13 Equations, FenicsR13, Finite element method, CIP stabilization, Python,
SymPy, Non-equilibrium gas �ows, Lid-driven cavity
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Chapter 1

Introduction

The Navier-Stokes equations have been the most popularly used equations to describe gas �ows
in recent times. Despite its popularity, these equations are based on a continuum assumption
and are therefore not valid in all situations. The continuum assumption treats the �uids as
continuous, even though in reality they are composed of molecules on a microscopic scale. The
Knudsen number, Kn, which is de�ned as the ratio between the mean free path of the molecules
and the length scale of the process, determines how valid this continuum assumption is for
a given process. In other words, the Navier-Stokes equations are valid at very low Knudsen
numbers (Kn → 0). Since most phenomena relevant to our daily lives fall in this regime, these
equations often provide su�ciently accurate results. However, there are processes for which the
Knudsen number is substantial (Kn > 0.1), such as �ow past re-entry vehicle and �ow related
to microtechnology, where the gas dynamics are not accurately predicted by the Navier-Stokes
equations. In these situations, we turn to statistical approaches such as the Boltzmann equations,
wherein individual particle dynamics are accounted for through microscopic descriptions.

Although the Boltzmann equations are e�ective in predicting rare�ed gas �ows accurately,
they are often computationally too expensive. Therefore, extended macroscopic models turn out
to be an attractive alternative. Similar to the classical models, these models consist of compact
sets of partial di�erential equations involving the important gas quantities. The regularized 13-
moment (R13) equations (H.Struchtrup and M.Torrilhon 2003) forms one such example of these
macroscopic models. The ability of the R13 equations to predict rarefaction e�ects at moderate
computational costs makes these equations an exciting prospect for the future.

1.1 Research Background

The advantages of the R13 equations described above have engendered active research into
numerical methods to solve these equations over the past decade. Initially, a �nite di�erence
scheme was employed to approximate the steady-state R13 equations in A.Rana, M.Torrilhon
and H.Struchtrup 2013. Comparisons with the solutions obtained from the computationally
expensive Direct Simulation Monte Carlo (DSMC) validated the accuracy of the solutions to
the R13 equations. Following this, an implicit discontinuous Galerkin method was used for
hierarchical simulations (M.Torrilhon and N.Sarna 2017) were the solutions to the steady-state
linearized R13 equations were compared to the lower order models such as the NSF (Navier-
Stokes-Fourier) system. In this report, we focus on the �nite element approach to solving the
R13 equations.

Recently, the use of �nite element methods for the R13 equations was presented in A.Westerkamp
2017; A.Westerkamp and M.Torrilhon 2019 along with methods to tackle the resulting instabil-
ities using stabilization schemes (A.Westerkamp 2012; A.Westerkamp and M.Torrilhon 2014,
2017). Based on these works, FenicsR13, an FEM solver for the linearized R13 equations built
on the FEniCS simulation framework, was developed (L.Theisen and M.Torrilhon 2020).

1
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1.2 FenicsR13

FenicsR13 (L.Theisen and M.Torrilhon 2020) is a mixed �nite element solver designed to solve
the linearized R13 equations of non-equilibrium gas dynamics. This solver is built on Python
using the FEniCS computing platform. In FenicsR13, the capabilities of the FEniCS's Uniform
Form Language (UFL) has been extended to accommodate the tensorial implementation of the
variational formulation in FEniCS. FenicsR13 can be used to solve 2D rare�ed gas �ow problems
using a variety of mixed �nite elements. A CIP stabilization scheme has been implemented in
FenicsR13 in order to remove the restriction on the choice of �nite elements for the �eld variables
posed by the Ladyzenskaja-Babuska-Brezzi (LBB) condition (see Section 3.1). The choice of the
stabilization parameters involved in the CIP scheme is crucial for the accuracy of the solver, yet,
barring a brief look in (A.Westerkamp 2017), there are not many resources that would help make
an educated choice here. This is precisely the gap that the �rst part of this thesis hopes to �ll.

1.3 Thesis objectives

Following the motivation provided in the previous section, the primary objectives of this thesis
are listed below.

� Development of a script to generate analytical solutions over the annular domain: We
aim to study the stabilization parameters through analysis of convergence curves, and
analytical solutions are a pre-requisite for this. Therefore, we seek to develop a script that
can generate analytical solutions over an annular domain based on user-speci�ed boundary
conditions. To extend the utility of this script, we export the analytical solution in three
di�erent formats that can be used by future solvers of the linearized R13 equations.

� Investigation of the stabilization parameters associated with the CIP scheme: We aim to
gain more insight into the selection of values and scaling for the stabilization parameters
associated with the CIP scheme used in FenicsR13. We plan to execute extensive parametric
studies to study the e�ect of the choice of stabilization parameters on the accuracy and
convergence of FenicsR13 and make suggestions based on the results.

� Extension of the FenicsR13 solver to solve the non-linear conservation equations: Currently,
the FenicsR13 solver solves the linearized R13 equations. This linearization restricts the
ability of the solver to capture the complex non-linear physics of the �ows accurately. We
aim to modify the FenicsR13 solver to solve the non-linear conservation laws in the hopes
that it will allow for more accurate predictions of the �ows.

1.4 Thesis Outline

The report has been constructed in a structured manner in order to ensure a comprehensive and
cogent thesis. Here we describe the outline of the thesis with a brief introduction to each chapter
for the sake of the reader's convenience.

� Chapter 1 : A brief explanation of the need for a statistical description of gas dynamics
in certain scenarios is discussed. The R13 equations are mentioned, and its advantages in
comparison to the classical Navier-Stokes equations and DSMC approaches are explained.
Following this, the report provides a glimpse into the attempts to solve the R13 equations
numerically in recent times with particular emphasis placed on FenicsR13 the �nite element
solver for solving the linearized R13 equations. Finally, the objectives of the thesis are
stated and described.
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� Chapter 2 : As a starting point for the thesis, a theoretical foundation explaining the con-
cepts relevant to this thesis is established in this chapter. Firstly, the Kinetic Gas Theory
is introduced to the reader, along with the renowned Boltzmann equation. Following this,
extended macroscopic models for the Boltzmann equation are explained, with particular
emphasis on Grad's method of moments. With this background a transition to the R13
equations is made explaining clearly how it is an extension of Grad's 13-moment equa-
tions. The chapter then concludes with a discussion of the linearized R13 equations and
the associated boundary conditions.

� Chapter 3: Since one of the main objectives of this thesis revolves around the CIP stabil-
ization scheme, the need for stabilization when employing the �nite element approach to
solving the R13 equations is thoroughly explained. The concept of saddle point problems
is important in understanding this need for stabilization. Therefore, simple examples are
used to help the reader understand this concept and see how it relates to the saddle points
students are introduced to in multi-variable calculus. Finally, the exact implementation of
the CIP stabilization in the FenicsR13 solver is explained and shown.

� Chapter 4: This chapter is dedicated to introducing the Python script developed to generate
analytical solutions of the linearized R13 equations over an annular domain. Starting with
a description of the annular domain set-up, the di�erent boundary conditions and source
functions that are allowed to be speci�ed are explained. Then a step-by-step procedure to
using the script is provided along with examples. In order to illustrate how the generated
solutions can be used in tandem with other solvers, simple examples are provided which
can be used as references for future solvers.

� Chapter 5: The parametric study investigating the stabilization parameters involved in the
CIP scheme, is delineated in this chapter. The four cases used in this study are explained
in terms of the boundary conditions and source terms. Following this, the results of the
parametric studies are presented along with relevant discussions and observations. The
chapter is concluded with a summary of the observations and a suggested optimal range
for the stabilization values based on the results of the study.

� Chapter 6: The extension of the FenicsR13 solver to solve non-linear conservation equations
is discussed in this chapter. A new scaling for the R13 equations is proposed which helps
improve the convergence of the solver once the non-linear extension has been implemen-
ted. The non-linear extension with respect to the momentum equation is validate against
established results for the problem of a lid-driven cavity for various Reynolds numbers.
Finally, a non-isothermal lid-driven cavity is constructed in order to validate the complete
non-linear conservation equations extension. Solutions for this problem are generated using
ANSYS FLUENT and COMSOL, and the results are presented.



Chapter 2

The R13 Equations

Since this thesis is fundamentally based on solving the R13 equation set, it is crucial to understand
the roots of the R13 system and its derivation. This chapter is dedicated to that very purpose.
A solid foundation is laid with an introduction to the Kinetic Gas Theory and the Boltzmann
equations. Following this, the derivation of extended macroscopic models using the method of
moments is described. Finally, this chapter is concluded with the derivation of the R13 equations
(H.Struchtrup and M.Torrilhon 2003) and its corresponding boundary conditions.

2.1 Kinetic Gas Theory

In the Kinetic Gas Theory, the state of the gas is described through the phase density, or dis-
tribution function, f (x, t, c). Physically, this phase density represents the probability of �nding
particles with velocity c at the location x at the time instant t. An integration of the phase
density over the phase space ∆c and the spatial domain ∆x results in the number of particles
with velocity in the range ∆c located in the domain ∆x at the time instant t as

N∆x,∆c (t) =

∫
∆x

∫
∆c
f (x, t, c) dcdx (2.1)

Once the phase density f is know, it can be used to obtain the other quantities describing
the gas dynamics such as mass density ρ (x, t), velocity u (x, t), internal energy ε (x, t) and so on.
A couple of examples are shown below

ρ (x, t) = m

∫
R3

f (x, t, c) dc (2.2)

ui (x, t) =
m

ρ (x, t)

∫
R3

cif (x, t, c) dc (2.3)

ε (x, t) =
m

ρ (x, t)

∫
R3

1

2
(ci − ui)2 f (x, t, c) dc (2.4)

where m denotes the mass of each particle.
Based on this, we can say that the knowledge of the phase density f is su�cient to describe

the gas dynamics in its entirety. However, the solution to f is not quite straightforward as
collisions between particles lead to energy and momentum exchange which in turn causes the
phase density to change in space and time. The Boltzmann equation shown below describes the
evolution of f through collisions and free �ight.

∂f

∂t
+ ci

∂f

∂xi
+Gk

∂f

∂ck
= S (2.5)

Here Gk denotes the external body forces on the particles (e.g. gravity) and S, the collision
integral, represents the change in phase density due to interaction between particles.

4
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2.2 Grad's Method of Moments

The higher dimensionality of the phase space f makes its direct computation using the Boltzmann
equation computationally expensive. This has consequentially engendered many extended macro-
scopic models based on the Boltzmann equation, which o�er a much more modest computational
cost. The popular examples of these would be the Chapman-Enskog (CE) expansion and the
method of moments. A detailed explanation of these methods can be found in (H.Struchtrup
2005).

The fundamental assumption in the method of moments is that the state of the gas can be
described by an extended set of moments as

uA =

∫
R3

ΨA (ck) f (x, t, c) dc (2.6)

using a vector of polynomials ΨA. The system of moment equations to be solved are obtained
by multiplying the Boltzmann equation with ΨA and integrating over the velocity space. These
equations, however, do not form a closed system of partial di�erential equations as they contain
higher-order moments that require explicit closures.

Grad's 13-moment system (G13) uses the vector ΨA = m
{

1, ci,
1
2C

2, C〈iCj〉,
1
2C

2Ci
}
and

produces uA = {ρ, ρui, ρε, σij , si} where ui, ε, σij and si denote the velocity, internal energy, stress
tensor and heat �ux, respectively. Here C is the peculiar velocity (a.k.a barycentric velocity)
de�ned as Ci = ci − ui and the notation A〈ij〉 represents the symmetric and deviatoric part of

the tensor Aij as A〈ij〉 = 1
2 (Aij +Aji) − 1

3Akkδij (a detailed explanation of this notation can
be found in the Appendix of (H.Struchtrup 2005)). The resulting moment equations, neglecting
external body forces, are shown below as

∂uA
∂t

+
∂FAk
∂xk

= PA (2.7)

where FAk =
∫
R3 ΨAckf dc and PA =

∫
R3 ΨASf dc. This system is not closed as it contains the

�uxes of the moments FAk and the production terms PA which are not a priori related to uA.
In order to deal with this closure problem, Grad de�nes f|G as an expansion of the Maxwellian
into Hermite polynomials as

f|G =

(
a+ ai

∂

∂Ci
+ aij

∂2

∂Ci∂Cj
+ · · ·

)
fM (2.8)

where fM = ρ
m

(
m

2πkT

)3/2
e−(m/2kT )C2

is the local Maxwellian. Since the phase density needs to
produce uA as its moments, the coe�cients ai1i2···in can be determined according to

uA =

∫
R3

ΨA (ck)

(
a+ ai

∂

∂Ci
+ aij

∂2

∂Ci∂Cj
+ · · ·

)
fM dc (2.9)

Upon doing this the phase density assumes the form f|G = f|G (uA (x, t) , Ci) and only depends
on space and time through the moments. This allows for the �uxes FAk and production terms
PA to be computed as functions of the moments

FAk = FAk (uB) , PA = PA (uB) (2.10)

and the system of moment equations is closed.
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The �nal form of Grad's 13-moment equations is given by

Dρ

Dt
+ ρ

∂uk
∂xk

= 0 (2.11)

ρ
Dui
Dt

+ θ
∂ρ

∂xi
+ ρ

∂θ

∂xi
+
∂σik
∂xk

= ρGi (2.12)

3

2
ρ
Dθ

Dt
+ ρθ

∂uk
∂xk

+
∂sk
∂xk

+ σkl
∂uk
∂xl

= 0 (2.13)

Dσij
Dt

+
4

5

∂s〈i

∂xj〉
+ 2σk〈i

∂uj〉

∂xk
+ σij

∂uk
∂xk

+ 2ρθ
∂u〈i

∂xj〉
= − p

µ
σij (2.14)

Dsi
Dt

+
5

2
ρθ

∂θ

∂xi
+

5

2
σik

∂θ

∂xk
− σikθ

∂ ln ρ

∂xk
− σik

ρ

∂σkl
∂xl

+ θ
∂σik
∂xk

(2.15)

+
7

5
si
∂uk
∂xk

+
7

5
sk
∂ui
∂xk

+
2

5
sk
∂uk
∂xi

= −2

3

p

µ
si (2.16)

2.3 Regularized 13-Moment Equations

While the G13 system is capable of predicting certain rarefaction e�ects, it fails in predicting
shock wave pro�les at large enough Mach numbers. In (H.Struchtrup and M.Torrilhon 2003)
the R13 equations were introduced as the G13 set with regularization applied to take care of
the highest-order terms based on a pseudo-equilibrium approach. This makes the equations
non-hyperbolic and yields continuous shock structures across all Mach numbers.

2.3.1 R13 Equations

The R13 system in its complete non-linear form is given by

Dρ

Dt
+ ρ

∂uk
∂xk

= 0 (2.17)

ρ
Dui
Dt

+ θ
∂ρ

∂xi
+ ρ

∂θ

∂xi
+
∂σik
∂xk

= 0 (2.18)

3

2
ρ
Dθ

Dt
+ ρθ

∂uk
∂xk

+
∂sk
∂xk

+ σkl
∂uk
∂xl

= 0 (2.19)

Dσij
Dt

+ σij
∂uk
∂xk

+
4

5

∂s〈i

∂xj〉
+ 2p

∂u〈i

∂xj〉
+ 2σk〈i

∂uj〉

∂xk
+
∂mijk

∂xk
= − p

µ
σij (2.20)

Dsi
Dt

+
5

2
p
∂θ

∂xi
+

5

2
σik

∂θ

∂xk
+ θ

∂σik
∂xk

− θσik
∂ ln ρ

∂xk
+

7

5
sk
∂ui
∂xk

+
2

5
sk
∂uk
∂xi

(2.21)

+
7

5
si
∂uk
∂xk

+
1

2

∂Rik
∂xk

+
1

6

∂∆

∂xi
+mijk

∂uj
∂xk
− σij

ρ

∂σjk
∂xk

= −2

3

p

µ
si (2.22)

with closure for the highest order moments ∆, Rij and mijk given as

∆ =− 12
µ

p

[
θ
∂sk
∂xk

+
5

2
sk

∂θ

∂xk
− θsk

∂ ln ρ

∂xk
− sk

ρ

∂σkl
∂xl

+ θσkl
∂uk
∂xi

]
, (2.23)

Rij =− 24

5

µ

p
[θ
∂s〈i

∂xj〉
+ s〈i

∂θ

∂xj〉
− θs〈i

∂ ln ρ

∂xj〉
−
s〈i

ρ

∂σj〉k

∂xk
(2.24)

+
5

7
θ

[
σk〈i

∂uj〉

∂xk
+ σk〈i

∂uk
∂xj〉

− 2

3
σij

∂uk
∂xk

]
− 5

6

σij
ρ

∂sk
∂xk
− 5

6

σijσkl
ρ

∂uk
∂xl

] (2.25)

mijk =− 2
µ

p

[
θ
∂σ〈ij

∂xk〉
− θσ〈ij

∂ ln ρ

∂xk〉
+

4

5
s〈i

∂uj
∂xk〉

−
σ〈ij

ρ

∂σk〉l

∂xl

]
. (2.26)
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2.3.2 R13 Boundary Conditions

In addition to the three �eld variables (temperature θ, pressure p and velocity u) which are solved
for in classical gas dynamics, the R13 equations also solve for the �eld variables heat �ux s and
stress tensor σ. This necessitates an increased number of boundary conditions. A commonly
used model in deriving the wall boundary conditions for the moment equations is the Maxwell
accommodation model. This model assumes that a fraction χ of the particles hitting the walls
are absorbed and re-injected into the gas domain according to a certain distribution function. In
our case, we assume this function to be the Maxwellian fM . The remaining (1− χ) fraction of
the particles are specularly re�ected. Accordingly, the distribution function in an in�nitesimal
neighbourhood of a wall is given by

f̃ (c) =

{
χfM (c) + (1− χ) f

(∗)
gas (c) n · (c− uw) > 0

fgas (c) n · (c− uw) < 0
(2.27)

where n is the normal on the wall pointing into the domain and f
(∗)
gas is the distribution function

corresponding to the transformed velocities resulting from re�ection. Although these equations
are non-linear in their fullest extent, we will be considering the linearized version which is shown
in Section 2.3.3.

2.3.3 Linearized R13 Equations

A linearized steady-state variant of the full non-linear R13 equation set is solved in FenicsR13.
This linearization is carried out by considering the unknown �eld variables as a �rst-order per-
turbation of an equilibrium ground state (A.Westerkamp 2017). Physically this makes these
equations quite appropriate for cases that involve slow �ows (low Mach number). Additionally,
the steady-state assumption leads to the exclusion of the temporal derivative terms. The res-
ulting linear equation set consists of three balance laws (mass, energy and momentum), two
evolution equations for the non-equilibrium quantities (heat �ux s and stress tensor σ) and three
closure equations for the highest-order moments m, R and ∆. The mass source, heat source and

body force vector are represented by fm, fh and fb, respectively, in the equations below.

∇ · u = fm (2.28)

∇ · s + ∇ · u = fh (2.29)

∇p+∇ · σ = fb (2.30)

5

2
∇θ +∇ · σ +

1

2
∇ ·R+

1

6
∇∆ = − 1

Kn

2

3
s (2.31)

4

5
(∇s)STF + 2 (∇u)STF +∇ ·m = − 1

Kn
σ (2.32)

Closure for the highest-order moments m, R and ∆ are provided by the following equations.

m = −2Kn
(
∇σ
)
STF

(2.33)

R = −24

5
Kn (∇s)STF (2.34)

∆ = −12Kn (∇ · s) (2.35)
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where the deviatoric part of the symmetric tensor is denoted by (·)STF . The above equations are
all in the dimensionless form, and the Knudsen number Kn describes the rarefaction situation
of the gas being considered. A detailed derivation of the analytical solution, including details
about the ansatz used, for the cases of slow, rare�ed gas �ows past a cylinder and a sphere can
be found in (A.Westerkamp and M.Torrilhon 2012; M.Torrilhon 2010).

After appropriate linearization and simpli�cation for a two-dimensional space considering a
boundary-aligned coordinate system (n, t), the boundary condition equations for the R13 system,
which are non-linear in their fullest extent, look as shown below.

εwp (un − uwn ) = εwv χ̃ ((p− pw) + εsσnn) (2.36)

σnt = χ̃

(
(ut − uwt ) +

1

5
st +mnnt

)
(2.37)

Rnt = χ̃

(
− (ut − uwt ) +

11

5
st −mnnt

)
(2.38)

sn = χ̃

(
2 (θ − θw) +

1

2
σnn +

2

5
Rnn +

2

15
∆

)
(2.39)

mnnn = χ̃

(
−2

5
(θ − θw) +

7

5
σnn −

2

25
Rnn −

2

75
∆

)
(2.40)(

1

2
mnnn +mntt

)
= χ̃

(
1

2
σnn + σtt

)
(2.41)

where θw, uwn , u
w
t and pw represent the temperature, normal velocity, tangential velocity and

pressure at the wall. The parameters εwp , ε
w
v and εs are used for the in�ow modelling and

the modi�ed Maxwell accommodation factor is given by χ̃ =
√

2
πθ0

χ
2−χ (A.Westerkamp and

M.Torrilhon 2019).
It is important to observe how Eq. 2.36 is structured to understand the in�ow model being

used here. The parameters involved are the normal velocity prescription εwv , the pressure pre-
scription εwp and the stress prescription εs. When εwp >> εwv there is greater emphasis on the
normal velocity boundary condition un = uwn and when εwv >> εwp there is greater emphasis on
the pressure boundary condition pw = p+ εsσnn. Clearly the stress prescription εs represents the
emphasis of the stress term within the pressure boundary condition. For example, a standard
zero normal velocity boundary condition can be enabled by setting εwv = 0 and uwn = 0.
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2.3.4 Weak Formulation

The �rst step in using the �nite element method is to obtain the weak formulation of the equa-
tions being solved. To do this, the equation set (Eq 2.28 to 2.32) shown in Section 2.3.3 is

multiplied with an appropriate set of test functions
(
κ, q, υ, r, ψ

)
and integrated over the entire

computational domain Ω. The �nal discrete weak form of the equations is given by

Find
(
θ, p, u, s, σ

)
∈ V h

θ × V h
p × V h

u × V h
s × V h

σ such that

∫
Ω
u · ∇q dx−

∫
Γ

(
εwv
εwp
χ̃ ((p− pw) + εsσnn) + uwn

)
q dl +

∫
Ω
fmq dx = 0 (2.42)

−
∫

Ω
(∇ · s)κ dx+

∫
Ω

(fh − fm)κ dx = 0 (2.43)∫
Ω

(
∇ · σ

)
· υ dx+

∫
Ω
∇p · υ dx−

∫
Ω
fb · υ dx = 0 (2.44)

12

5
Kn

∫
Ω

(∇s)STF : ∇r dx+
2

3

1

Kn

∫
Ω
s · r dx− 5

2

∫
Ω
θ (∇ · r) dx∫

Ω

(
∇ · σ

)
· r dx+

∫
Γ

(
5

4χ̃
sn −

5

8
σnn +

5

2
θw
)
rn dl

+2Kn

∫
(∇ · s) (∇ · r) dx+

∫
Γ

(
6χ̃

5
st −

1

2
σnt

)
rt dl = 0 (2.45)

2 Kn

∫
Ω

(
∇σ
)
STF

∵ ∇ψ dx+
1

Kn

∫
Ω
σ : ψ dx− 2

∫
Ω
u ·
(
∇ · ψ

)
dx

+
4

5

∫
Ω

(∇s)STF : ψ dx+

∫
Γ

(
9

4
χ̃σnn −

3

10
sn

)
ψnn dl

+

∫
Γ

2χ̃

(
σtt +

1

2
σnn

)(
ψtt +

1

2
ψnn

)
dl

+

∫
Γ

(
2

χ̃
σnt + 2uwt −

2

5
st

)
ψnt dl

+

∫
Γ

(
2
εwv
εwp
χ̃ ((p− pw) + εsσnn) + 2uwn

)
ψnn dl = 0 (2.46)

for all
(
κ, q, υ, r, ψ

)
∈ V h

θ × V h
p × V h

u × V h
s × V h

σ .

where V h
θ , V

h
p , V

h
u , V

h
s , V

h
σ represent suitable discrete subspaces of the discrete Sobolev space

H1 (Ω). In the above equations integration by parts has been carried out and the boundary
conditions (Eq 2.36 to 2.41) have been rearranged and naturally inserted (see L.Theisen and
M.Torrilhon 2020). Therefore, there is no need to explicitly enforce essential boundary conditions.



Chapter 3

Stabilization

The steady-state linearized R13 equations in two dimensions consist of a complex two-fold saddle
point structure which needs to be dealt with when attempting to solve the equations numerically.
Familiarity with saddle point problems is essential in understanding why stabilization is a ne-
cessary part of the numerical method employed. Therefore, a brief introduction to saddle point
problems and methods to deal with them are discussed in this section. Furthermore, the ra-
tionale behind choosing to implement stabilization instead of using mixed elements is explained.
Finally, the actual implementation of the CIP stabilization in the fenicsR13 solver (L.Theisen
and M.Torrilhon 2020) is explicitly depicted and elaborated.

3.1 Saddle Point Problems

A general saddle point problem involves a functional of two arguments (say L (w, q)) and the
objective is to �nd a pair of arguments (say (u,p)) such that the resulting value is minimized
with respect to the �rst variable (u) and maximized with respect to the other variable (p).
Mathematically this can be represented as

L (u, q) ≤ L (u, p) ≤ L (w, p) , ∀w, q (3.1)

Another way to write this would be

L (u,p) = min
v

max
q
L (v, q) = max

q
min

v
L (v, q) (3.2)

A �nite-dimensional example of such a saddle point problem arises when dealing with quad-
ratic programming. Consider the minimization problem

min
x∈Rn

1

2
xTAx− bTx (3.3)

, where A ∈ Rn×n and b ∈ Rn×n subject to a constraint

Bx = g (3.4)

where B ∈ Rm×n (m < n). Restating the same problem after introducing a Lagrangian mul-
tiplier y as shown below

min
x∈Rn

max
y∈Rn

L (x, y) :=
1

2
xTAx− bTx + yT (Bx− g) (3.5)

helps us notice that this problem is indeed a saddle point problem. Further, the necessary
conditions for a solution pair (u,p) are

10
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∇xL (u, p) = Au + BTp− b = 0 (3.6)

∇yL (u, p) = Bu− g = 0 (3.7)

which can be written in a matrix form as[
A BT

B 0

] [
u
p

]
=

[
b
g

]
(3.8)

Saddle point problems of this kind tend to arise as a result of Galerkin discretization. A
classic example of this would be Stokes problem which describes the �ow of a highly viscous
�uid. The variables solved for in this case are the pressure p and velocity vector u. This case
has been analysed extensively (J.Donea and A.Huerta 2003), and the resulting equations after
testing with (q,u) look as follows.

a(u, v) + b (v, p) = l (v) , ∀ v (3.9)

b (u, q)= 0, ∀ q (3.10)

where

a (u, v) :=
3∑

j=1

∫
Ω
∇uj · ∇vj dx, b (v,p) := −

∫
Ω

div v p dx, (3.11)

and

l (v) :=

∫
Ω

f · v dx (3.12)

Again the structure of the �nal equations (Eq 3.9 and 3.10) is similar to that in the quadratic
programming case (Eq 3.8).

The linearized R13 equations considered in this report contains a two-fold saddle-point struc-
ture and, a comprehensive illustration of this can be found in (L.Theisen and M.Torrilhon 2020).
In the mentioned work a rigorous derivation is presented and it can be clearly seen how the weak
form of the linearized R13 equations leads to a discrete algebraic system of the form[

A BT
B 0

] [
x
y

]
=

[
f
g

]
(3.13)

which is again of the same form as Eq 3.8. In this equation x =
(
σ, s, p

)
and y = (u, θ).

Here A,B, f and g consist of sub-functionals corresponding to the discrete weak form (Eq 2.42
to 2.46)

The Ladyzenskaja-Babuska-Brezzi (LBB) condition is a speci�c instance of the discrete inf-
sup condition (M.Benzi, G.H.Golub and J.Liesen 2005) which is necessary and su�cient for the
well-posedness of a discrete saddle point problem arising from Galerkin discretization. The LBB
condition for a problem of the form (Eq 3.9-3.10) is stated as

∃β > 0 , inf
q∈M

sup
v∈X

b (v, q)

‖v‖X‖q‖M
≥ β (3.14)

For the Stokes problem discussed above, this LBB condition restricts the selection of bases
for the Galerkin approximation. It requires the dimension of the function space used for the p
variable to be at least equal to that of u. A popularly used mixed �nite element combination
for this problem is the Taylor-Hood P2P1 element where linear polynomials approximate the
pressure variable, and a quadratic approximation is used for the velocity variable.
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There are a couple of problems with using such mixed �nite elements to deal with the LBB
condition. Firstly, the use of mixed elements certainly leads to di�erences in accuracy among
the di�erent �eld variables being considered. As an example, for the case of the Stokes problem,
there is a greater requirement for accuracy in the pressure than the velocity given that the most
common goal in �uid problems is to calculate the forces on bodies. Hence it can be clearly
seen how the use of mixed �nite elements in these scenarios will lead to a drastic increase
in computational requirement. The other issue with these mixed elements is that a general
straightforward construction scheme for a stable combination of the discrete subspace is unknown
in the case of saddle-point problems. This is even more of a problem when considering the two-
fold saddle point structure of the linearized R13 equations. For these reasons, the alternative of
stabilization is considered.

Stabilization techniques can be used to circumvent the LBB condition and allow for the use
of stable equal-order discretization. The general form of such a stabilization scheme involves the
addition of a stabilization term S (scaled by a stabilization parameter δ) to a compound bilinear
form C to get the modi�ed form C̃.

C̃ ((u,p) , (v, q)) = C ((u, p) , (v, q)) + δ S ((u,p) , (v, q)) (3.15)

On a discrete level, stabilization adds a contribution to the zero block in Eq 3.8 and allows
to circumvent the discrete LBB condition. Residual-based stabilization schemes are the most
popular when dealing with �ow problems. However, the CIP stabilization method is claimed to
be better suited for the case of the linearized R13 equations in (A.Westerkamp 2017) and has
therefore been implemented in the fenicsR13 code.

3.2 CIP stabilization in FenicsR13

This part describes how the CIP stabilization technique has been implemented within the fen-
icsR13 code. In the following A represents the bilinear form corresponding to the weak formu-
lation presented in Section 2.3.4 and Ã represents the modi�ed bilinear form which arises from
adding a stabilization term S to A as

A
((
θ, p, u, s, σ

)
,
(
κ, q, υ, r, ψ

))
= Ã

((
θ, p, u, s, σ

)
,
(
κ, q, υ, r, ψ

))
+ S ((θ, p, u) , (κ, q, υ))

(3.16)
where

S ((θ, p, u) , (κ, q, υ))

=
∑
E∈E

∫
E
δθ [∇θ · n] [∇κ · n] dl +

∑
E∈E

∫
E
δp [∇p · n] [∇q · n] dl +

∑
E∈E

∫
E
δu [∇u · n] [∇υ · n] dl

(3.17)

Note that here E denotes the index set of all interior element edges and
[
f · n

]
= f+ · n+ +

f− · n− denotes the jump of quantity f across the edge, weighted with the oppositely oriented
edge normals n+ and n−.

Here the stabilization parameters are of the form

δθ = δ̃θh
nθ (3.18)

δp = δ̃ph
np (3.19)

δu = δ̃uh
nu (3.20)

.



Chapter 4

Analytical Solution Generating Script

As mentioned in Chapter 1, one of the main objectives of this thesis is to gain more insight into
the optimal choice of stabilization parameters for the CIP scheme employed in FenicsR13. One
approach is to perform a parametric study, by repeatedly solving a problem while varying the
value and scaling of each of the stabilization parameters described in Section 3.2 and analyzing
the e�ect it has on the solution. If the problems considered in this study possess analytical
solutions, we can easily judge the e�ect each choice of stabilization parameters has on the ac-
curacy of the solver by comparing the obtained solution with the reference analytical solutions.
Exact solutions for the linearized R13 have been derived for the problem in an annular domain
in A.Westerkamp and M.Torrilhon 2012; M.Torrilhon 2010. In this chapter, we present a Python
code that generates exact solutions of the linearized R13 equations for a problem over an annular
domain based on user-speci�ed boundary conditions. This script is then later used to generate
exact solutions for the cases considered in the CIP investigation presented in Chapter 5. Fur-
thermore, the code exports the generated solution in three di�erent formats; a Python script, a
C++ header �le and a C++ �le compatible with the DOLFIN python module (popularly used
to solve PDEs). This allows the script to be used in tandem with a variety of solvers of the
linearized R13 equations for validation purposes and for similar parametric investigations that
rely on convergence studies.

4.1 Annular Domain

The domain considered here is the annular region between two in�nitely long coaxial cylinders of
radii R0 and R1. An assumption of symmetry and homogeneity along the length of the cylinders
allows for the extraction of a 2D model problem while retaining the 3D nature of the �eld variables
such as the stress tensor σ (refer to A.Westerkamp and M.Torrilhon 2019; L.Theisen 2019 for
a more detailed explanation). This model problem is represented by a 2D domain described by
the area between two concentric circles of radii R0 and R1 as

Ω =
{

(x, y) ∈ R2 | R0 ≤
√
x2 + y2 ≤ R1

}
(4.1)

Sharp corners are avoided in this domain, and the fact that the origin of the coaxial circles
has been excluded from the domain allows for the prescription of normal �uxes without any
issues. A representation of the domain is shown in Fig. 4.1. The values for each parameter on
both the boundaries (Γ0 and Γ1 in Fig. 4.1) can be of the form a+ b cos (θ) or a+ b sin (θ) where
(a, b) ∈ R. This allows for a variety of cases to be speci�ed and a few of these are explained
below.

� A rotating cylindrical shell could be modelled by setting the tangential velocity at the
boundary to a constant value and simultaneously setting the normal velocity to zero.
(ut = vrot, un = 0)

13
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Figure 4.1: A schematic of the annular domain. It is important to note the orientation of the
normals and tangential velocity vectors at the walls.

� The classical problem of the �ow past a circular cylinder can be modelled by setting the tan-
gential velocity, normal velocity and pressure at the inner boundary to zero (ut = 0, un = 0, p = 0)
and assigning periodic functions for the the same at the outer boundary (ut = −v0 sin (θ) , un =
v0 cos (θ) , p =−p0 cos (θ)).

For the annular domain considered here, analytical solutions of the linearized R13 equations
do not exist for any arbitrary source terms fm, fh and fb. Only speci�c forms of the source
functions allow for non-homogeneous analytical solutions. Therefore, a few general forms of
source functions which allow for analytical solutions have been determined empirically. The
corresponding expressions for fm, fh and fb considered in this work are shown in Eq 4.2-4.4

fm =
1

Kn

(
Mo +

M1r

Kn
cos (θ) +

M2r
2

Kn2

)
(4.2)

fh =
1

Kn

(
Qo +

Q1r

Kn
cos (θ) +

Q2r
2

Kn2

)
(4.3)

fb =
1

Kn


[
F0 +

(
F1

(
r

Kn + 9Kn
5r

)
+ F22

r2

Kn2

)
cos (θ) + F2

r2

Kn2

][
G0

(
1− 5r2

27Kn2

)
+G1

r
Kn +

(
G2

r2

Kn2 +G11
Kn
r

)
sin (θ)

]
0

 (4.4)

where M0,M1,M2, Q0, Q1, Q2, F0, F1, F2, F22, G0, G1, G2, G11 ∈ R.
The values of these constants can be adjusted to create a range source functions which can

in turn be used to specify a variety of problems. Simple functions for the source terms can be
enabled by setting most of these constants to zero. However, it is important that the structure
of these functions is unaltered. Examples of some acceptable function for the source terms are
listed in Table 4.1
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fm fh fb

2r2

Kn3
3

Kn


[

4
Kn +

(
2r2

Kn3

)
cos (θ)

][
1

Kn

(
1− 5r2

27Kn2

)
+ 3r

Kn2

]
0


1

Kn

(
1 + 3r cos(θ)

Kn

)
r

2Kn2 cos (θ) + r2

Kn3
1

Kn


[
1 + 2

(
r

Kn + 9Kn
5r

)
cos (θ) + 3r2

Kn2

][
2r
Kn +

(
3r2

Kn2 + 4Kn
r

)
sin (θ)

]
0


Table 4.1: Examples of Source Function

4.2 Python Code

4.2.1 SymPy Module

SymPy is a lightweight open-source Python library used for symbolic mathematics (A.Meurer,
C.P.Smith and Paprocki 2017). SymPy is written entirely in Python, which allows for simple
installation and use. This library o�ers a variety of capabilities ranging from basic symbolic
arithmetic to calculus, linear algebra, discrete mathematics and quantum physics. Here we use
this library to solve the linear system of equations arising from boundary conditions to obtain
the values of the integration constants.

4.2.2 Code Structure

The boundary condition equations corresponding to the annular domain under consideration
along with the generic analytical expressions for the 5 �eld variables

(
θ, p, u, q, σ

)
(see Appendix

A) have been hard-coded into the script presented. The script executes the calculation that needs
to be done involving the solving the boundary condition equations according to the boundary
values provided by the user, to obtain the required values of the integration constants. Once the
integration constant values are determined, these values are plugged into the generic expressions
for the �eld variables to get the �nal expressions for each �eld variable corresponding to the
speci�c problem considered. Furthermore, this code exports the �nal expression of the �eld
variables in three di�erent formats which can then be used in tandem with future solvers for
the linearized R13 equations. This could serve the purpose of simply validating the solver or for
performing convergence studies.

The script requires a YAML �le, to be provided as input, that holds the boundary speci�c-
ations and formulation parameters for the problem under consideration. The script then reads
the YAML �le and produces the solution corresponding to the speci�ed problem. As mentioned
above, the solution is then exported into the current working directory as a python script (.py), a
C++ header �le (.h) and a C++ script (.cpp) which conforms to the syntax required by DOLFIN
(A.Logg, G.N.Wells and J.Hake 2012) (a python library popularly used to solve PDEs).

4.2.3 Code Execution

System requirements :

1. A system with Python installed

(a) Execute the following commands to check

python3 --version

2. The SymPy and SciPy libraries need to be installed
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(a) Execute the following commands to check

pip3 list

i. If pip3 is not installed then install using (on Ubuntu)

sudo apt -get update

sudo apt install python3 -pip

(b) If either of the libraries is not listed then install using

pip3 install sympy

pip3 install scipy

Code Execution :

Download the script from:
https://github.com/aditya314karthik/Analytical-Solution-Generating-Script-for-Lin-R13

1. Open/Create the YAML �le, which will contain the boundary condition values (Fig. 4.2).

2. Adjust/Set the values of the formulation, source and boundary parameters to describe the
problem.

(a) Comments are provided in the example YAML �le (input.yml) describing each para-
meter.

(b) Note that the source terms need to conform to the format speci�ed in Section 4.1.
Additionally, the format for each source term is provided in the example YAML �le
(input.yml) for ease of use.

(c) Consider the direction of the normal at both boundaries and assign the sign to the
velocity terms at the boundaries appropriately.

3. Ensure that the YAML �le is in the same directory as the main script (exact_sol_gen_R13.py).

4. Open a command-line interface.

5. Move into the directory containing the script and the YAML �le.

6. Execute

python3 exact_sol_gen_R13.py <input_file_name >.yml

For example :

python3 exact_sol_gen_R13.py input.yml

7. Wait until a message saying �Exact Solution Generated in current working directory� ap-
pears.

8. Find the exported solutions corresponding to the speci�ed problem in the current working
directory.

https://github.com/aditya314karthik/Analytical-Solution-Generating-Script-for-Lin-R13


Chapter 4. Analytical Solution Generating Script 17

Figure 4.2: An example of the input YAML �le that needs to be supplied to the analytical
solution generating script.

4.2.4 Using Exported Solution

The output �les generated are :

1. Exact_Sol_Python.py

2. Exact_Sol_C++.h

3. Exact_Sol_Dol�n.cpp

Examples depicting how these �les can be imported and used in other programs are elaborated
below.

4.2.4.1 Python Format

Here a simple python script that imports the Exact_Sol_Python.py �le and evaluates each �eld
variable at the point (1, 1) is shown (Fig. 4.3). The output produced by this python script is
shown below (Fig. 4.4)



Chapter 4. Analytical Solution Generating Script 18

Figure 4.3: An example of a Python code importing the Exact_Sol_Python.py �le

Figure 4.4: Output corresponding to the above Python script

4.2.4.2 C++ Format

In a similar fashion to the previous section, the simple C++ code shown here (Fig. 4.5) imports
the header �le �Exact_Sol+C++.h� and evaluates the generated solution corresponding to each
�eld variable at the point (1, 1). The output generated is also provided (Fig. 4.6). Note that
since the evaluation of the modi�ed Bessel functions is required within the header �le, it is
essential to ensure that the C++ Boost library is installed and available for use.

Figure 4.5: An example of a C++ code importing the Exact_Sol_C++.h �le



Chapter 4. Analytical Solution Generating Script 19

Figure 4.6: Output corresponding to the above C++ script

4.2.4.3 DOLFIN Format

Along the same lines as the two previous sections, here this sample python program reads the
Exact_Sol_Dol�n.cpp �le using the DOLFIN python module then interpolates it over a mesh
for the annular domain and �nally prints the values of each variable at the point (1, 1) (Fig. 4.7).
The resulting output (Fig. 4.8) is quite similar to the outputs from the previous two sections.

Figure 4.7: An example of a DOLFIN enabled code importing the Exact_Sol_Dol�n.cpp �le

Figure 4.8: Output corresponding to the above DOLFIN code
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4.2.5 Limitations

Some of the limitations associated with the range of cases that this code can accommodate are
mentioned below.

1. As mentioned earlier, although there might be other source functions which allow for non-
homogeneous analytical solutions, this code is only able to deal with source functions of
the forms speci�ed in Section 4.1.

2. The boundary values have to be of the form a + b cos (θ) or a + b sin (θ) where (a, b) ∈ R
as mentioned in Section 4.1.

3. The code is unable to generate solutions when the Knudsen number (Kn) is less than about
0.005. The system becomes ill-conditioned.



Chapter 5

CIP Investigation

5.1 Cases and Error Measures

To perform a thorough parametric analysis, four di�erent cases with increasingly complex solu-
tions are considered in this report. Analytical solutions for the four cases were generated using
the python script presented in Chapter 4 and used to produce convergence curves corresponding
to each iteration of this parametric study. This section describes the domain (which is common
to the four cases) along with the boundary conditions and formulation parameters associated
with each speci�c case. The Knudsen number Kn and modi�ed accommodation coe�cient χ̃ are
both set to unity, and the radii are set to R0 = 0.5 and R1 = 2.0 in all the four cases. Note that
the input �le used for each case is provided in Appendix B for the reader's reference.

5.1.1 Annular Domain

The annular domain consists of the area between two coaxial circles of radii R0 and R1 as

Ω =
{
x = (x, y)T : R0 ≤

√
x2 + y2 ≤ R1

}
, (5.1)

.
Sharp corners are avoided in this domain, and the fact that the origin of the coaxial circles

has been excluded from the domain allows for the prescription of normal �uxes without any
issues. Note that this 2D domain can be interpreted as the cross-sectional area corresponding to
an in�nite annular cylinder extending in the third dimension. A representation of the domain is
shown below (Fig 5.1)

21
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Figure 5.1: A schematic of the annular domain. It is important to note the orientation of the
normals and tangential velocity vectors at the walls.

5.1.2 Case I : Homogeneous Flow Past Circular Cylinder

In this case, the inner ring is modelled as a solid wall by setting the normal and tangential
velocity to zero. The outer wall, on the other hand, is modelled as a cut-o� from a larger
external homogeneous velocity �eld directed from left to right. This is achieved by prescribing
a periodic velocity and pressure value at this outer ring. No source terms are considered in this
case which makes this the most trivial of the four cases considered. A depiction of the streamlines
and velocity contours for this case is shown in Fig 5.2

5.1.3 Case II : Mass and Heat Source Induced Flow in an Extruded Ring

In this case, both the rings are modelled as solid walls (zero normal velocity); however, the inner
wall is prescribed a tangential velocity of -10, whereas the outer wall is kept stationary. Contrary
to the previous case, here non-zero heat and mass sources are considered. Both the mass source

fm and heat source fh are described by the function
(

1− 5r2

18Kn2

)
cos (θ) and these sources induce

the �ow in this case. The streamlines and velocity contours for this case is shown in Fig 5.2

5.1.4 Case III : Body Force Induced Flow in an Extruded Ring

This case is somewhat similar to the previous case (Case II) except for the fact that this time
instead of the mass and heat sources a body force fb acting throughout the domain induces the
�ow (Fig 5.3). The walls are modelled exactly the same as they were in the previous case. The
body force vector considered is shown below (in the cylindrical coordinate system)

fb =
1

Kn


[
0.1 +

(
0.2
(
r

Kn + 9Kn
5r

)
+ 0.4 r2

Kn2

)
cos (θ) + 0.3 r2

Kn2

][
0.1
(

1− 5r2

27Kn2

)
+ 0.2 r

Kn +
(

0.3 r2

Kn2 + 0.4Kn
r

)
sin (θ)

]
0

 (5.2)
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(a) Case I (b) Case II

Figure 5.2: Streamlines and velocity contours corresponding to Case 1 and Case 2

Although setting-up the body force vector this way excludes the possibility of any reasonable
physical interpretation, this makes the solution more complex and therefore would prove useful
when it comes to qualitatively evalutation of the di�erent cases at the end of the study.

5.1.5 Case IV : Complex Flow

This �nal case has been constructed in order to maximize the mathematical complexity of the
solution. The mathematical complexity of the is proportional to how many components of the
generic solution are active in the solution of the problem considered. It should be noted that
analytical solutions are only available for source functions conforming to certain formats. This
automatically restricts the range of cases for which convergence studies can be conducted. With
that in mind, an attempt to maximize the mathematical complexity was made by selecting an
elaborate function for each of the source terms. Additionally, the walls were modelled exactly
as they have been in Case II and Case III. The body force vector considered is the same as in
Eq 5.2, whereas the mass and heat sources were de�ned as shown below and the corresponding
streamlines and velocity contours can be seen in Fig 5.3

fm =
1

Kn

(
0.1 +

0.2r

Kn
cos (θ) +

0.3r2

Kn2

)
(5.3)

fh =
1

Kn

(
0.1 +

0.2r

Kn
cos (θ) +

0.3r2

Kn2

)
(5.4)

5.1.6 Error Measures

The relevant error measures considered in this report are the standard relative L2-function error
eL2 and the relative error el∞ which are de�ned as follows.
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(a) Case III (b) Case IV

Figure 5.3: Streamlines and velocity contours corresponding to Case 3 and Case 4

eL2 =
‖fex − f‖L2(Ω)

max {fex |n}n∈η
(5.5)

el∞ =
‖ {fex |n −f |n}n∈η ‖l∞(η)

max {fex |n}n∈η
(5.6)

where fex is the exact solution projected onto a function space, f is the discrete solution, and η
represents the set containing all the mesh nodes. Since the resulting solution is in terms of node
values, it makes sense to look into the el∞ where point-wise errors are considered based on the
nodal values. Throughout the study convergence curves corresponding to these two errors are
plotted and used for qualitative comparison purposes.

5.2 Exponent Value Study

In A.Westerkamp 2017 a method to select parameter values such that the stabilization behavior
is unchanged with re�nement is discussed. According to that method, the appropriate exponent
values for the case of the linearized R13 equations is (nθ, np, nu) = (3, 1, 3). In order to verify
this selection, a parametric study using fenicsR13 was carried out varying the values for each
of nθ, np and nu (from Eq 3.18-3.20) within the set (0, 1, 2, 3, 4). The values for the constant

part were chosen as
(
δ̃θ, δ̃p, δ̃u

)
= (1, 0.01, 1) which is in accordance with (L.Theisen 2019). A

thorough examination of the convergence curves and error data produced in each case has led
to the conclusion that the selection of exponents suggested in A.Westerkamp 2017 is indeed the
most appropriate choice. The convergence plots shown in Fig 5.4 are obtained after combining
the errors across all 4 cases using the L2-norm and L∞-norm of the relative eL2 and el∞ errors
respectively. The de�nitions of the L2 and L∞ norms used here are given below in Eq 5.7-5.8.
In the following graphs, when each of the exponents were varied, the other two exponents were
set according to (nθ, np, nu) = (3, 1, 3).
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(a) Variation of nθ

(b) Variation of np

(c) Variation of nu

Figure 5.4: Convergence plots obtained after averaging the errors across the 4 cases. Each plot
corresponds to the independent variation of one of the three exponents. These graphs illustrate
that the selection of (nθ, np, nu) = (3, 1, 3) leads to the best convergence.

eavg
L2 =

√√√√ 4∑
i=1

(
ei
L2

)2
(5.7)

eavgl∞ = max
{
eil∞
}
, i = {1, 2, 3, 4} (5.8)
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where eiL2 and e
i
l∞ represent the relative L2 and L∞ error in a particular �eld variable in the

ith case considered.

5.3 Constant Value Study

Once the choice for the exponents (nθ, np, nu) was veri�ed, a parametric study with respect to the

constant terms
(
δ̃θ, δ̃p, δ̃u

)
was carried out setting (nθ, np, nu) = (3, 1, 3). A wide range of values

(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000) was considered for each constant
parameter and a rigorous investigation was carried which resulted in 2197 sets of convergence
curves per case. All the convergence curves were then plotted together on Mathematica (n.d.)
and a qualitative analysis of the curves was performed. Some of the general observations made
are discussed below. Note that in a similar fashion to what was seen in Section 5.2, in each of
the graphs below, when one of the three constant terms were varied, the other two were set in

accordance with
(
δ̃θ, δ̃p, δ̃u

)
= (1, 0.01, 1).

1. As expected, it was noticed that independent variation of each of δ̃θ, δ̃p and δ̃u primarily
a�ected the convergence curves corresponding to θ, p and u respectively. This is illustrated
in Fig 5.5 where the relative eL2 errors are plotted and in Fig 5.6 where the relative el∞

errors are plotted.

2. In general, the convergence of the non-equilibrium variables s and σ are signi�cantly less

a�ected by the choice of
(
δ̃θ, δ̃p, δ̃u

)
than the equilibrium variables.

3. Curiously, the independent variation of δ̃p and δ̃u did have a reduced e�ect on the other �eld
variables (apart from p and u respectively), whereas all the curves but the one corresponding
to θ remain almost unchanged with the independent variation of δ̃θ. Consequentially, the
choice of δ̃θ has less of an impact on the average error curves than δ̃p and δ̃u.

4. In all cases, extreme values (0.001, 0.005, 500, 1000) most often resulted in the drastic
worsening on the convergence. This can be seen in Fig 5.7.

5. It was also observed that the errors corresponding to higher values of hmax (coarser meshes)

on an average were less a�ected by the choice of
(
δ̃θ, δ̃p, δ̃u

)
than those corresponding to

lower values of hmax (�ner meshes).

6. In all the cases, a complete lack of convergence in all �eld variables was seen, when the
values of δ̃p ' 1000. In other words the errors become independent of the mesh size hmax.
Such a phenomenon was not consistently observed with respect to δ̃θ and δ̃u. In Fig 5.8
convergence plots at such high δp values are shown and it can be seen how this phenomenon
is seen across all the four cases and even in the non-equilibrium quantities s and σ.
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(a) Variation of δ̃θ

(b) Variation of δ̃p

(c) Variation of δ̃u

Figure 5.5: Independent Variation - eL2 : These graphs correspond to the relative eL2 errors
averaged across the 4 cases and they serve to demonstrate how the stabilization parameters δθ,
δp and δu mostly a�ect a�ect the variables θ, p and u respectively.
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(a) Variation of δ̃θ

(b) Variation of δ̃p

(c) Variation of δ̃u

Figure 5.6: Independent Variation - el∞ : These graphs correspond to the relative el∞ errors
averaged across the 4 cases and they serve to demonstrate how the stabilization parameters δθ,
δp and δu mostly a�ect a�ect the variables θ, p and u respectively.
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(a) Extremely low values

(b) Extremely high values

Figure 5.7: Convergence at extreme values for stabilization parameters. It can be seen how
selecting extreme values for the stabilization parameters often results in worsened convergence.
Once again here the errors from the 4 cases are combined using the L2 and L∞ norms.
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(a) Case I (b) Case II

(c) Case III

(d) Case IV

Figure 5.8: Flattening of curves at high values of δ̃p. A total lack of convergence was observed
when δ̃p ' 1000 in all cases for all the variables. Along with the equilibrium variables the
non-equilibrium variables q and σ are also shown here.

5.4 Structured Mesh Study

Finally, the entire process from Section 5.3 was repeated using structured meshes instead of the
unstructured meshes that were used before. For each case the average errors were calculated by
considering the L2 and L∞ norms of the relative eL2 and el∞ errors across all the �eld variables
within each case (similar to Eq 5.7-5.8). Interestingly, it was noted that change to structured
meshes almost did not improve the average error convergence curves at all (Fig 5.9). This is quite
surprising because in M.Torrilhon and N.Sarna 2017 it was observed that the use of structured
meshes resulted in substantially improved curves. However, in M.Torrilhon and N.Sarna 2017
quad elements were considered, which is in contrast to the triangular elements considered in
this report. Unfortunately, FEniCS does not yet allow for the implementation of quad elements,
and therefore it was not possible to check whether this di�erence was the reason behind the
contradictory observations. An example of a structured and unstructured mesh used in this
study is shown in Fig 5.10.
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(a) Case I (b) Case II

(c) Case III
(d) Case IV

Figure 5.9: Structured mesh convergence comparison. It can be seen here how the use of struc-
tured meshes in place of unstructured meshes does not improve the convergence.

(a) hmax = 0.329047 (b) hmax = 0.249587

Figure 5.10: Mesh comparison.

5.5 Conclusion

It has been veri�ed empirically that the choice of exponents nθ = 3, np = 1 and nu = 3 is indeed
the most suitable for the case of the linearized R13 equations. Then a few general observations
regarding the e�ect of the constant terms δ̃θ, δ̃p and δ̃u on the convergence are discussed and
substantiated using various plots. This study should, therefore, provide the reader with a certain
level of intuition about choosing the stabilization parameters for the CIP scheme. To help with
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this, a range of values for δ̃θ, δ̃p and δ̃u which on an average lead to good convergence with
respect to the average error is shown in Table 5.1. It is crucial to note that this suggestion is
entirely based on these four particular cases and should be used with caution. A �nal observation
is made about the lack of improved convergence when using structured meshes, at least when
triangular elements are considered.

Parameter Range

δ̃θ 0.1 to 5

δ̃p 0.01 to 0.1

δ̃u 0.05 to 1

Table 5.1: Suggested range for stabilization parameters
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Non-Linear Conservation Equations

Although the FenicsR13 solver is capable of solving a variety of rare�ed gas �ow problems at a
modest computational cost, its solution is currently restricted to the linearized version of the R13
equations. This consequentially puts a limitation on the solver's capability to accurately capture
the physics of the �ow. This latter part of the thesis is focussed on relaxing this restriction by
including the non-linear terms in the conservation equations being solved.

The mass, momentum and energy conservation equations in their non-linear form are given
as

ρ∇ · u+ u · ∇ρ = 0 (6.1)

ρu · ∇u+∇p+∇ · σ = 0 (6.2)

3

2
ρu · ∇θ +∇ · q + p∇ · u+ σ : (∇u)STF = 0 (6.3)

6.1 Scaled R13 Equations

Non-linear systems of equations are traditionally solved using a variant of the classic Newton's
iterative method. An inherent problem that comes with this method is the unreliability of the
convergence across di�erent problems. If the non-linear terms in the equations are of smaller
order than the the linear terms, we expect the convergence to improve signi�cantly. Therefore, we
start by introducing a new scaling for the R13 equations that introduces appropriate coe�cients
in front of the non-linear terms to improve convergence.

We consider a background state at rest, described by mass density ρ0 and temperature T0,
upon which thermal and mechanical perturbations are imposed. The gas is considered to be
ideal and therefore satis�es the relation

p0 = ρ0RspT0 = ρ0θ0 (6.4)

where p0 is the pressure, Rsp is the speci�c gas constant and θ0 is the temperature in energy
units (m2/s2). The velocity scale of the background state is given as

√
θ0.

The magnitude of the mechanical perturbation on the system corresponds to u0, the in�ow
or boundary velocity, whereas the magnitude of the thermal perturbation is represented by ∆T0,
the temperature gradient imposed on the system. We then introduce c0, the thermal velocity
scale as

c0 = Rsp ∆T0 (6.5)

which makes it convenient to compare the relative magnitudes of the perturbations imposed on
the system.

33
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Based on this setting, we de�ne the following new non-dimensional quantities

û =
u

u0
, θ̂ = 1 +

θ − θ0

c2
0

, p̂ =

√
θ0 (p− p0)

u0p0
, σ̂ =

σ

ρ0u0

√
θ0

q̂ =
q

ρ0c2
0

√
θ0
, x̂ =

x

x0
, m̂ =

m

ρ0u0θ0
, R̂ =

R

ρ0θ0c2
0

where x0 is the length scale of the process.
The characteristic numbers corresponding to this scaling are the Mach, Knudsen and Reyn-

olds numbers de�ned as

Ma =
u0√
θ0

Kn =
τ
√
θ0

x0
=
λ0

x0
Re =

u0x0

τθ0
=
ρ0u0x0

µ0
(6.6)

where τ is the relaxation time, λ0 is the mean free path of the gas particles and µ0 is the dynamic
viscosity of the gas de�ned as µ0 = ρ0θ0τ . These de�nitions can be rearranged to get the relation

Ma = Re Kn (6.7)

which means that the selection of values for two of these quantities �xes the values for the third.
The R13 equations, with non-linear conservation equations and linear evolution equations for

the heat �ux and stress tensor, are given in their non-dimensional form as

∇ · u+
Ma

(1 + Ma p)
u · ∇p− Ma2Γ2

(Ma2Γ2 (θ − 1) + 1)
u · ∇θ = 0 (6.8)

Ma (1 + Ma p)u · ∇u
Ma2Γ2 (θ − 1) + 1

+∇p+∇ · σ = 0 (6.9)

3

2

Ma2Γ2 (1 + Ma p)

(Ma2Γ2 (θ − 1) + 1)
u · ∇θ + MaΓ2∇ · q + (1 + Ma p)∇ · u+ Maσ : (∇u)STF = 0 (6.10)

5

2
∇θ +

(
1

MaΓ2

)
∇ · σ +

1

2
∇ ·R+

1

6
∇R = − 1

Kn

2

3
q (6.11)

4

5

(
MaΓ2

) (
∇q
)

STF
+ 2 (∇u)STF +∇ ·m = − 1

Kn
σ (6.12)

where Γ = c0/u0 is the ratio between the thermal and mechanical velocity scales and the ∗̂ above
the non-dimensional parameters have been dropped to enhance readability. When the thermal
perturbation dominates, the value of Γ is large and the system reduces to a `heat system', whereas
when the mechanical perturbation dominates, the value of Γ is small and the system reduced to a
`stress system' according to how these systems are described in A.Westerkamp and M.Torrilhon
(2019) and L.Theisen (2019).

6.2 Lid-Driven Cavity Validation

As mentioned earlier, the solutions to the Navier-Stokes equations are valid as the Knudsen
number and the Mach number approach zero. Therefore, we validate the non-linear extension by
solving the benchmark problem of a lid-driven cavity at very low Knudsen and Mach numbers
and comparing the solution with established CFD solutions for the Navier-Stokes equations.
The results obtained from FenicsR13 are compared with the well-known solutions presented in
U.Ghia, et al 1982.

The lid-driven cavity problem is de�ned in a square-shaped cavity �lled with �uid as shown
in Fig 6.1. The top boundary moves in the tangential direction with a constant velocity u0 and
the other three boundaries are modelled as impenetrable solid no-slip walls.
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ut = u0

L

Lρ0 µ0

Figure 6.1: Schematic of the Lid-Driven Cavity problem.

6.2.1 Linear FenicsR13 Solution

In L.Theisen 2019, the results produced by FenicsR13 for the lid-driven cavity is presented.
Since the solution is limited to the linearized R13 equations, these results cannot be directly
compared to the results from U.Ghia, et al 1982. The streamlines and velocity pro�les along
the mid-planes (x/L = 0.5 and y/L = 0.5) for the case of u0 = 1, Kn = 0.0001 and constant
temperature for all boundaries is shown in Fig 5.2. We can notice that the clockwise rotation
is quite symmetric which is not in accordance with the CFD results. We expect the non-linear
conservations equations to be able to capture this asymmetry in streamlines within the cavity.

6.2.2 Non-linear FenicsR13 Solution

The solutions presented in U.Ghia, et al 1982 are based on solutions to the stream function and
vorticity transport equations and consequentially, do not account for the heat generation due to
the �ow within the cavity. Therefore, to compare the FenicsR13 solutions to these results we
proceed to only add the non-linear terms in the momentum conservation equation shown below

Ma (1 + Ma p)u · ∇u
Ma2Γ2 (θ − 1) + 1

+∇p+∇ · σ = 0 (6.13)

while keeping the mass and energy equations in their linear forms.
All the walls are set to a constant temperature such that θw = 1 and the lid is provided a

tangential velocity uwt = u0 = 1. We set Γ = 0 as the process is isothermal with the temper-
ature being constant across the domain. We consider four cases in our validation for Reynolds
numbers Re = {100, 1000, 3200, 5000}. An unstructured mesh with 37974 triangular elements
has been used for each of the following simulations. We do not consider cases with even higher
Reynolds numbers as these �ows tend to become quite convection dominant and therefore require
stabilization schemes such as SUPG or GLS to attain convergence.

It was observed that when the Knudsen number Kn was set to very low values (Kn ≤
0.0001), numerical inaccuracies crept into the solution which needed to be compensated by a
�ner grid. Therefore, even though, in principle, the FenicsR13 solutions should match with the
CFD solutions at any low Knudsen number as long as the Reynolds number is identical, in
some cases we have resorted to selecting speci�c values for Mach number and Knudsen numbers
that led to good convergence at reasonable grid sizes. However, it is important to understand
that the motive behind these simulations is merely to demonstrate the fact that the solutions
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Figure 6.2: Linearized R13 equations solution of the Lid-Driven Cavity problem for the case of
u0 = 1, Kn = 0.0001 and constant temperature boundaries. The streamlines plot and velocity
pro�les along x/L = 0.5 and y/L = 0.5 are shown.

to the R13 equations do indeed compare well with classical CFD solutions at very low Knudsen
and Mach numbers. The typical cases which the FenicsR13 is designed to solve are �ows with
moderate Knudsen number where the Navier-Stokes-Fourier equations fail. Therefore, this issue
with numerical errors due to low Kn values will not be encountered in the typical problems which
are intended to be solved using FenicsR13.

For the �rst case, the Mach and Knudsen numbers have been set to Ma = 0.01 and Kn =
0.0001 which corresponds to a Reynolds number of Re = 100. In Fig 6.3 the results for the case
Re = 100 are shown and it can be seen that the velocity streamlines produced closely resemble
those presented in U.Ghia, et al 1982. Furthermore, the velocity pro�les along the mid-planes
(x/L = 0.5 and y/L = 0.5) are plotted and it can be seen that they show great agreement with
the CFD solution. In Fig 6.4, similar comparisons for the case of Re = 1000 can be seen and the
results once again conform well with the CFD solutions. The streamline plots clearly show that
the recirculation region in the bottom corners of the cavity have been captured by FenicsR13.
Finally, the results for the cases of Re = 3200 and Re = 5000 are shown in Fig 6.5-6.6 where
great agreement with the CFD results can be seen once again. At these Reynolds numbers the
�ow develops an additional small recirculation region in the top-left corner of the cavity which
has been captured e�ectively by FenicsR13.

The comparisons made for these four cases, clearly validate the non-linear extension of the
FenicsR13 solver with respect to the momentum balance. These results also strongly reinforce
the fact that the R13 equations are capable of predicting �ows accurately even at low Knudsen
and Mach numbers.
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Figure 6.3: Lid-Driven Cavity : Comparison of the solution from the extended FenicsR13 and the
results from U.Ghia, et al 1982 for Re = 100. The FenicsR13 solution corresponds to Ma = 0.01
and Kn = 0.0001. The streamlines plot on the top-left and the solid black lines in the velocity
pro�le plots below correspond to FenicsR13 whereas the streamlines plot on the top-right and
the blue dots in the velocity pro�le plots correspond to U.Ghia, et al 1982.
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Figure 6.4: Lid-Driven Cavity : Comparison of the solution from the extended FenicsR13 and the
results from U.Ghia, et al 1982 for Re = 1000. The FenicsR13 solution corresponds to Ma = 0.1
and Kn = 0.0001. The streamlines plot on the top-left and the solid black lines in the velocity
pro�le plots below correspond to FenicsR13 whereas the streamlines plot on the top-right and
the blue dots in the velocity pro�le plots correspond to U.Ghia, et al 1982.
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Figure 6.5: Lid-Driven Cavity : Comparison of the solution from the extended FenicsR13 and
the results from U.Ghia, et al 1982 for Re = 3200. The FenicsR13 solution corresponds to
Ma = 0.096 and Kn = 0.00003. The streamlines plot on the top-left and the solid black lines
in the velocity pro�le plots below correspond to FenicsR13 whereas the streamlines plot on the
top-right and the blue dots in the velocity pro�le plots correspond to U.Ghia, et al 1982.
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Figure 6.6: Lid-Driven Cavity : Comparison of the solution from the extended FenicsR13 and the
results from U.Ghia, et al 1982 for Re = 5000. The FenicsR13 solution corresponds to Ma = 0.1
and Kn = 0.00002. The streamlines plot on the top-left and the solid black lines in the velocity
pro�le plots below correspond to FenicsR13 whereas the streamlines plot on the top-right and
the blue dots in the velocity pro�le plots correspond to U.Ghia, et al 1982.



Chapter 6. Non-Linear Conservation Equations 41

6.3 Non-Isothermal Cases for Validation

One way to validate the non-linear extension of the FenicsR13 with respect to the mass and energy
conservation equations, is to validate the FenicsR13 solution for a non-isothermal lid-driven cavity
problem. The results produced by FenicsR13 can be compared with the solutions produced by
established commercial Navier-Stokes-Fourier solvers such as ANSYS FLUENT and COMSOL
Multiphysics. In this section we start by de�ning such a problem with realistic physical properties
for the gas and derive the corresponding boundary conditions and characteristic numbers. We
then provide results for these cases produced by ANSYS FLUENT and COMSOL in terms of
streamline plots and velocity pro�les.

6.3.1 Physical Properties of Argon

The R13 equations are derived for monatomic gases such as the noble gases; Helium, Neon,
Argon, Krypton, Xenon and Radon. We choose Argon in this work as it is a commonly used
example for monatomic gases. Argon is the 18th element in the periodic table with a relative
atomic mass of 39.948 amu or 39.948 g/mol. We can calculate the speci�c gas constant of Argon
using its molar mass and the universal gas constant R = 8.314 J/molK as

Rsp =
R

M
=

8.314

39.948
= 0.2081 J/gK = 280.1 J/Kg K

We de�ne the background temperature of the system in consideration to be T0 = 20◦C and the
corresponding physical properties of argon at this temperature are listed below

� Density : ρ0 = 1.6617 Kg/m3

� Dynamic viscosity : µ0 = 2.2294× 10−5 Kg/ms

� Thermal conductivity : κ0 = 0.017391 W/mK

� Speci�c Heat : cp = 521.62 J/KgK

� Mean free path : λ0 ≈ 50 nm

� Prandtl number : Pr = 0.66865

6.3.2 Problem Statement

When setting up this non-isothermal lid-driven cavity problem, it is important to choose an
appropriate Knudsen number Kn. The value of the Knudsen number needs to be low enough such
that the rare�ed e�ects are still negligible, but at the same time the value needs to high enough
to ensure that numerical inaccuracies do not creep into the solution. Therefore, considering
the mean free path of argon to be around λ0 ≈ 50nm, we select the size of the domain as
L = x0 = 100µm which results in a suitable Knudsen number value of Kn ≈ 0.0005. Following
this, we set the temperature of the walls to the background temperature of Twall = 20◦C and
model them as solid impenetrable no-slip walls (uwall = 0m/s). The temperature and velocity
of the lid are set to ulid = 10m/s and Tlid = 30◦C such that Γ works out to be

Γ =
c0

u0
=

√
Rsp (Tlid − Twall)

ulid
= 4.562

The Reynolds number and Mach number of the �ow are calculated as

Re =
ρ0uox0

µ0
= 74.51 Ma =

u0√
θ0

= 0.0405

An illustration of the problem can be seen in Fig 6.7.
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utlid = 10m/s Tlid = 30◦ C

Twall = 20◦ C
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Kn = 0.0005

Ma = 0.0405

Figure 6.7: Schematic of the non-isothermal lid-driven cavity problem

This problem has been solved on ANSYS FLUENT and COMSOL and the solutions are
shown below. The streamlines and pro�les along the mid-planes (x/L = 0.5 and y/L = 0.5) for
velocity and temperature can be seen in Fig 6.8-6.9.
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(a) Velocity Contours

(b) Temperature Contours

Figure 6.8: Contours produced by FLUENT (left) and COMSOL (right) for the non-isothermal
lid-driven cavity case
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Figure 6.9: Pro�les produced by FLUENT and COMSOL for the non-isothermal lid-driven cavity
case



Chapter 7

Future Work

A summary of the scope for future research based on the work presented in thesis is elucidated
in this chapter.

1. The analytical solution generating script presented in Chapter 4 is currently capable of
accommodating boundary conditions of the form a+b cos (θ) and a+b sin (θ) where (a, b) ∈
R and source terms of the forms speci�ed in Section 4.1. This script can be further improved
to extend the range of acceptable boundary conditions and source terms. However, it is
important to note here that although there might be other forms for the source terms that
allow for analytical solutions, not all forms of source terms lead to problems that possess
exact analytical solutions.

2. In the CIP investigation carried out in Chapter 5, the e�ect of the Knudsen number Kn on
the convergence has not been investigated. Therefore, it could be interesting to conduct a
study with a wider parametric space to see if the choice of optimal stabilization parameters
for the CIP Scheme is in�uenced by the Knudsen number of the process,

3. The extension of the FenicsR13 for the non-linear terms of the mass and energy conservation
equations needs to be validated based on the non-isothermal lid-driven cavity problem
that has been de�ned in Section 6.3. A major obstacle to this validation is the lack of
convergence observed once all the non-linear terms have been included. This could be
addressed through the implementation of an appropriate stabilization scheme.

45



Appendix A

Analytical Expressions of the �eld

variables

Note that in the expressions shown below log denotes the natural logarithm and In (·) andKn (·) represent
the modi�ed Bessel functions of the �rst and second kind, respectively. The subscript n denotes the order
of the Bessel Function and τ = Kn. A list of all the integration constants is shown below.

(
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, C

I,1
1 , CK,11 , CI,21 , CK,21 , CI,12 , CK,12 , CI,22 , CK,22 , CI,13 , CK,13 , CI,23 , CK,23

)
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A.2 Pressure

p (r, φ) = cos(φ)

[
− 8

3
I1


√

5
6r

τ

CI,21 − 8

3
K1


√

5
6r

τ

CK,21 +
r3 (3F22 +G2)

8τ3
+

2F1r
2

3τ2
−G11

+
r (3M1 + 2Q1)

5τ
− 2c9r

τ
+
c8τ

r

]
− 4

3
I0


√

5
6r

τ

CI,11 − 4

3
K0


√

5
6r

τ

CK,11

+
F2r

3

3τ3
+
F0r

τ
+

4r2 (3M2 + 2Q2)

15τ2
+ c4

(A.2)

46



Appendix A. Analytical Expressions of the �eld variables 47

A.3 Velocity
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uφ (r, φ) = sin(φ)
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A.4 Heat Flux

qr (r, φ) = cos(φ)
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qφ (r, φ) = − sin(φ)
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A.5 Stress

σrr (r, φ) = cos(φ)
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σφφ (r, φ) = − cos(φ)
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Appendix B

Case Descriptions

B.1 Case I

Figure B.1: Case I
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B.2 Case II

Figure B.2: Case II
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B.3 Case III

Figure B.3: Case III
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B.4 Case IV

Figure B.4: Case IV



Bibliography

A.Logg, G.N.Wells and J.Hake (2012). �DOLFIN: a C++/Python Finite Element Library�. In:
84, pp. 173�225. url: https://doi.org/10.1007/978-3-642-23099-8_10.

A.Meurer, C.P.Smith and Paprocki (Jan. 2017). �SymPy: symbolic computing in Python�. In:
PeerJ Computer Science 3, e103. issn: 2376-5992. doi: 10 . 7717 / peerj - cs . 103. url:
https://doi.org/10.7717/peerj-cs.103.

A.Rana, M.Torrilhon and H.Struchtrup (2013). �A Robust Numerical Methodfor the R13 Equa-
tions of Rare�ed Gas Dynamics: Application to Lid DrivenCavity�. In: Journal of Computa-

tional Physics 236, pp. 169�186. url: https://doi.org/10.1016/j.jcp.2012.11.023.
A.Westerkamp (2012). �Finite Element Discretizations for Extended Gas Dynamics�. MA thesis.

RWTH Aachen University. url: http : / / www . mathcces . rwth - aachen . de / _media /

3teaching/00projects/2012_masterthesis_arminwesterkamp.pdf.
� (2017). �A Continuous Interior Penalty Method for the Linear Regularized 13-Moment Equa-

tions Describing Rare�ed Gas Flows�. PhD thesis. RWTH Aachen. url: http : / / www .
mathcces.rwth-aachen.de/_media/3teaching/00projects/2017_phd_arminwesterkamp.

pdf.
A.Westerkamp and M.Torrilhon (2012). �Slow Rare�ed Gas Flow Past a Cylinder: Analytical

Solution in Comparison to the Sphere�. In: AIP Conference Proceedings 1501, pp. 207�214.
doi: 10.1063/1.4769505.

� (2014). �Stabilization Techniques in Finite ElementDiscretizations for Moment Approxima-
tions�. In: AIP Conference Proceedings 1628, pp. 1016�1023. url: https://doi.org/10.
1063/1.%204902705.

� (2017). �Curvature-Induced Instability of a Stokes-Like Problem with Non-Standard Bound-
ary Conditions�. In: Applied Numerical Mathematics 121, pp. 96�114. url: https://doi.
org/10.1016/j.%20apnum.2017.06.012.

� (2019). �Finite Element Methods for the Linear Regularized 13-Moment Equations Describing
Slow Rare�ed Gas Flows�. In: Journal of Computational Physics 389, pp. 1�21. url: https:
//doi.%20org/10.1016/j.jcp.2019.03.022.

H.Struchtrup (2005). Macroscopic transport equations for rare�ed gas �ows. Springer Berlin
Heidelberg. url: https://doi.org/10.1007/3-540-32386-4_9.

H.Struchtrup and M.Torrilhon (2003). �Regularization of Grad' s 13 moment equations: Deriva-
tion and linear analysis�. In: Physics of Fluids 15.9, pp. 2668�2680. doi: 10.1063/1.1597472.
eprint: https://doi.org/10.1063/1.1597472. url: https://doi.org/10.1063/1.
1597472.

Inc., Wolfram Research (n.d.). Mathematica, Version 12.1. Champaign, IL, 2020. url: https:
//www.wolfram.com/mathematica.

J.Donea and A.Huerta (2003). Finite Element Methods for Flow Problems. John Wiley and Sons.
doi: 10.1002/0470013826. url: https://doi.org/10.1002/0470013826.

L.Theisen (2019). �Simulation of Non-Equilibrium Gas Flows Using the FEniCS Computing
Platform�. MA thesis. RWTH Aachen. url: http://www.mathcces.rwth- aachen.de/
_media/3teaching/00projects/2019_ma_lamberttheisen.pdf.

54

https://doi.org/10.1007/978-3-642-23099-8_10
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1016/j.jcp.2012.11.023
http://www.mathcces.rwth-aachen.de/_media/3teaching/00projects/2012_masterthesis_arminwesterkamp.pdf
http://www.mathcces.rwth-aachen.de/_media/3teaching/00projects/2012_masterthesis_arminwesterkamp.pdf
http://www.mathcces.rwth-aachen.de/_media/3teaching/00projects/2017_phd_arminwesterkamp.pdf
http://www.mathcces.rwth-aachen.de/_media/3teaching/00projects/2017_phd_arminwesterkamp.pdf
http://www.mathcces.rwth-aachen.de/_media/3teaching/00projects/2017_phd_arminwesterkamp.pdf
https://doi.org/10.1063/1.4769505
https://doi.org/10.1063/1.%204902705
https://doi.org/10.1063/1.%204902705
https://doi.org/10.1016/j.%20apnum.2017.06.012
https://doi.org/10.1016/j.%20apnum.2017.06.012
https://doi.%20org/10.1016/j.jcp.2019.03.022
https://doi.%20org/10.1016/j.jcp.2019.03.022
https://doi.org/10.1007/3-540-32386-4_9
https://doi.org/10.1063/1.1597472
https://doi.org/10.1063/1.1597472
https://doi.org/10.1063/1.1597472
https://doi.org/10.1063/1.1597472
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.1002/0470013826
https://doi.org/10.1002/0470013826
http://www.mathcces.rwth-aachen.de/_media/3teaching/00projects/2019_ma_lamberttheisen.pdf
http://www.mathcces.rwth-aachen.de/_media/3teaching/00projects/2019_ma_lamberttheisen.pdf


Bibliography 55

L.Theisen and M.Torrilhon (2020). �fenicsR13: A Tensorial Mixed Finite Element Solver for
the Linear R13 Equations Using the FEniCS Computing Platform�. In: arXiv. url: https:
//arxiv.org/abs/2007.05944v1.

M.Benzi, G.H.Golub and J.Liesen (2005). �Numerical solution of saddle point problems�. In: 14,
pp. 1�137. url: https://doi.org/10.1017/S0962492904000212.

M.Torrilhon (2010). �Slow gas micro�ow past a sphere: Analytical solution based on moment
equations�. In: Physics of Fluids 22, p. 072001. url: https://doi.org/10.1063/1.3453707.

M.Torrilhon and N.Sarna (2017). �Hierarchical Boltzmann simulations and model error estima-
tion�. In: Journal of Computational Physics 342, pp. 66�84. url: http://dx.doi.org/10.
1016/j.jcp.2017.04.041.

U.Ghia, et al (1982). �High-Re solutions for incompressible �ow using the Navier-Stokes equations
and a multigrid method�. In: Journal of Computational Physics. doi: https://doi.org/10.
1016/0021-9991(82)90058-4.

https://arxiv.org/abs/2007.05944v1
https://arxiv.org/abs/2007.05944v1
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1063/1.3453707
http://dx.doi.org/10.1016/j.jcp.2017.04.041
http://dx.doi.org/10.1016/j.jcp.2017.04.041
https://doi.org/https://doi.org/10.1016/0021-9991(82)90058-4
https://doi.org/https://doi.org/10.1016/0021-9991(82)90058-4

	Introduction
	Research Background
	FenicsR13
	Thesis objectives
	Thesis Outline

	The R13 Equations
	Kinetic Gas Theory
	Grad's Method of Moments
	Regularized 13-Moment Equations
	R13 Equations
	R13 Boundary Conditions
	Linearized R13 Equations
	Weak Formulation


	Stabilization
	Saddle Point Problems
	CIP stabilization in FenicsR13

	Analytical Solution Generating Script
	Annular Domain
	Python Code
	SymPy Module
	Code Structure
	Code Execution
	Using Exported Solution
	Python Format
	C++ Format
	DOLFIN Format

	Limitations


	CIP Investigation
	Cases and Error Measures
	Annular Domain
	Case I : Homogeneous Flow Past Circular Cylinder
	Case II : Mass and Heat Source Induced Flow in an Extruded Ring
	Case III : Body Force Induced Flow in an Extruded Ring 
	Case IV : Complex Flow
	Error Measures

	Exponent Value Study
	Constant Value Study
	Structured Mesh Study
	Conclusion

	Non-Linear Conservation Equations
	Scaled R13 Equations
	Lid-Driven Cavity Validation
	Linear FenicsR13 Solution
	Non-linear FenicsR13 Solution

	Non-Isothermal Cases for Validation
	Physical Properties of Argon
	Problem Statement


	Future Work
	Analytical Expressions of the field variables
	Temperature
	Pressure
	Velocity
	Heat Flux
	Stress

	Case Descriptions
	Case I
	Case II
	Case III
	Case IV

	Bibliography

